Ketosis is a nutritional process characterised by serum concentrations of ketone bodies over 0.5 mM, with low and stable levels of insulin and blood glucose.[1][2] It is almost always generalized with hyperketonemia, that is, an elevated level of ketone bodies in the blood throughout the body. Ketone bodies are formed by ketogenesis when liver glycogen stores are depleted (or from metabolising medium-chain triglycerides[3]). Ketones can also be consumed in exogenous ketone foods and supplements.
You state that many athletes and very active people could benefit from 100-200g of carbs a day, and be back in ketosis in a few hours. Any particulars on which kind of activities or say how long/many training sessions would benefit from this to balance hormones. I train mma 3-4 days a week and also do lots of hiit and strength training as well. Just trying to see if this is a situation where i would benefit from your suggestions. Thanks!
For example, a key component of safe and lasting fat loss is your capability to tap into your body’s own storage fat for energy. This access to fat cannot happen if your body is constantly drawing on carbohydrate reserves and blood glucose for energy. In the type of moderate- to high-carbohydrate diets you’ve learned are widely recommended by prevailing nutrition science, not only does the utilization of fat for energy become far less crucial (since you’re constantly dumping readily available sugar sources into your body), but your metabolism never becomes efficient at using fat. There is a growing body of evidence proving that a high-fat, low-carbohydrate diet results in faster and more permanent weight loss than a low-fat diet. Furthermore, appetite satiety and dietary satisfaction significantly improve with a high-fat, low-carbohydrate diet that includes moderate protein.
On the ketogenic diet, carbohydrates are restricted and so cannot provide for all the metabolic needs of the body. Instead, fatty acids are used as the major source of fuel. These are used through fatty-acid oxidation in the cell's mitochondria (the energy-producing parts of the cell). Humans can convert some amino acids into glucose by a process called gluconeogenesis, but cannot do this by using fatty acids.[57] Since amino acids are needed to make proteins, which are essential for growth and repair of body tissues, these cannot be used only to produce glucose. This could pose a problem for the brain, since it is normally fuelled solely by glucose, and most fatty acids do not cross the blood–brain barrier. However, the liver can use long-chain fatty acids to synthesise the three ketone bodies β-hydroxybutyrate, acetoacetate and acetone. These ketone bodies enter the brain and partially substitute for blood glucose as a source of energy.[56]
×